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INTRODUCTION

Understanding the evolution of the solar protoplan-
etary cloud is a necessary prerequisite for solving the
problem of the formation of the Earth and planets,
which is deeply associated with the fundamental cos-
mogonic problem whose solution is now a major task of
science (Schmidt, 1957; Safronov, 1982; Galimov,
2001). According to modern concepts, planets are
formed after the loss of gravitational stability by the
dust and gas subdisk produced as a result of differential
rotation of the protoplanetary matter in an orbit around
a sunlike star and accretion processes accompanying
the settling of the dust component toward the equatorial
plane of the disk

 

1

 

 perpendicular to the rotation axis 

 

z

 

1

 

Flattening of the rotating protoplanetary cloud is mostly a conse-
quence of the opposition of the two main dynamic forces, gravita-
tional and centrifugal. In the case of equilibrium between these
two forces, weaker factors, such as thermal and viscous pro-
cesses, self-gravity of the disk, and electromagnetic phenomena,
become important for the evolution of the cloud.

 

(see, e.g., Toomre, 1964; Safronov, 1969, 1982, 1987;
Goldreich and Ward, 1973; Nakagawa et al., 1986, and
Youdin and Shu, 2002). It has now become clear that
planets of the Solar System were formed just from the
subdisk matter via the formation of individual discrete
concentration centers and their subsequent growth. It is
important that one of the key viewpoints in astrophysics
associates the formation and evolution of circumstellar
gas and dust disks of any kind with their turbulent
nature (Zel’dovich, 1981; Fridman, 1989; Dubrulle,
1993; Balbus and Hawley, 1998; Richard and Zahn,
1999). In particular, the Reynolds number 

 

Re

 

glob

 

 for the
solar protoplanetary disk of radius 

 

R

 

 rotating with an
angular velocity 

 

Ω

 

 was found to exceed 

 

10

 

10

 

 (here 

 

ν

 

 is
the kinematic viscosity, which we hereafter assume to
be constant).

According to modern concepts, the most likely
causes of turbulence generation in astrophysical disks
are a large-scale shear flow of differentially rotating
cosmic matter (Gor’kavyi and Fridman, 1994; Fridman
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Abstract

 

—We analyze the possible effect of hydrodynamic spirality that develops in a rotating disk on the syn-
ergetic structurization of cosmic matter and on the development of negative turbulent viscosity in cosmic matter
within the framework of the problem of the reconstruction of the evolution of the protoplanetary cloud that sur-
rounded the early Sun. We show that comparatively slow damping of turbulence in the disk can be partially due
to the lack of reflective symmetry of the anisotropic field of turbulent velocities about its equatorial plane. We
formulate the general concept of the development of energy-intensive coherent mesoscale vortex structures in
the thermodynamically open system of turbulent chaos associated with the realization of inverse cascade of
kinetic energy in mirror–nonsymmetrical disk turbulence. Because of energy release, the inverse cascade pro-
duces a hierarchical system of mass concentrations with a fractal density distribution, which ultimately initiate
the mechanisms of triggered cluster formation. We use the methods of nonequilibrium thermodynamics to
prove the possibility of the development of negative viscosity in the three-dimensional case in terms of the two-
scale hydrodynamic description of maximally developed disk turbulence. Negative viscosity in a rotating disk
system appears to be a manifestation of cascade processes in spiral turbulence where inverse energy transfer
from small to larger vortices occurs. Within the framework of asymmetric mechanics of turbulized continua,
we physically substantiated the phenomenological formula for the turbulent stress tensor of Wasiutynski, which
is widely used in the astrophysical literature to explain the differential rotation of various cosmic objects by
“anisotropic viscosity.” The aim of our study is, first and foremost, to improve a number of representative hydro-
dynamic models of cosmic natural turbulized media, including the birth of galaxies and galaxy clusters, birth
of stars from the diffuse medium of gas and dust clouds, formation of accretion disks and subsequent accumu-
lation of planetary systems, and also the formation of gaseous envelopes of planets, atmospheres, etc. This
paper continues the application of stochastic and thermodynamic approach to the synergetic description of the
structured turbulence of astrogeophysical systems, which we have been developing in a series of our papers
(Kolesnichenko, 2004, 2005; Kolesnichenko and Marov, 2006; Marov and Kolesnichenko, 2002, 2006).
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et al., 2003) and chaotic magnetic fields (see Armitage
et al., 2001), whose energy is often comparable to the
energy of hydrodynamic turbulence

 

2

 

. Hence, accretion
disks have substantial turbulent viscosity, which, com-
bined with differential rotation of matter, provides a
permanent internal source of thermal energy.

Thus, synergetic processes of self-organization
(which ultimately result in the structurization of any
astrophysical disks) in a thermodynamically open sub-
system of turbulent chaos (see Kolesnichenko, 2003,
2004) against the background of averaged large-scale
shear flow of cosmic matter

 

3

 

 associated with its differ-
ential rotation are mechanisms of extreme importance
that form the properties of the protoplanetary cloud at
various stages of its evolution, including the develop-
ment of a viscous accretion disk around the young Sun
in the T Tauri phase, the formation of the dust and gas
subdisk, its disruption as a result of gravitational insta-
bility, and the development of discrete concentration
centers with the subsequent densification and growth of
planetesimals, from which the planetary system was
formed. This is also true for the development at the ini-
tial stage of the evolution of turbulized disk matter of
various mesoscale relatively stable coherent vortical
structures, which appear to provide the most favorable
conditions for the mechanical and physicochemical
interaction between the particles of matter (see Barge
and Sommeria, 1995; Tanga et al., 1996; Nhavanis,
1999, and Kolesnichenko, 2005), resulting in the inten-
sification of phase transitions and processes of heat and
mass exchange between different regions of the mul-
tiphase disk system, spontaneous formation and growth
of condensed dust clusters,

 

4

 

 substantial modification of
the spectrum of oscillations, etc. During later stages of
the evolution of the protoplanetary cloud, as the disk
cools down, solid particles condense and grow in size
(mostly as a result of coagulation), and the gas dissi-
pates from the disk system into the interstellar space,
the dynamical, energetic, and optical roles of the dust
component increase substantially. As a result of the

 

2

 

Chaotic magnetic fields, which are dragged along with the accret-
ing plasma, are mixed by the differential rotation of the disk, and
undergo reconnection at the interfaces between chaotic cells,
must also appreciably contribute to the viscosity in the inner
region of the disk and in the outer layers of its atmosphere, where
the matter reaches sufficiently high degree of ionization. Large-
scale magnetic fields (see Eardley and Lightman, 1975) may also
play an important part in the physics of accretion.

 

3

 

Turbulence in the disk is usually viewed as an essentially stochas-
tic phenomenon described by averaged hydrodynamic equations
with the Reynolds stress tensor including the effect of the small-
scale background field of velocity fluctuations.

 

4

 

One of the possible scenarios of the formation and growth of dust
particles in plasma consists of the following stages: first, the pri-
mary clusters are formed; after these clusters reach the critical
size, the stage of heterogeneous condensation begins; at the next
stage, processes of coagulation and agglomeration (cohesion)
come to the fore; finally, at the last stage, the surface recombina-
tion of ions becomes the most important factor, which results in
permanent deposition of matter onto the surfaces of isolated mul-
ticharged particles.

 

growing inertia of particles, they all begin participate to
a smaller degree in the pulsational (vortical) motion of
the gas suspension, which ultimately results in their
effective convergence to the equatorial plane (

 

z

 

 = 0) of
the disk. Thus, contrary to what many researchers
believe, the turbulence of the disk medium somehow
contributes to the formation of the dust and gas subdisk,
whose gravitational instability ultimately results in the
formation of planetesimals (see Kolesnichenko and
Marov, 2006).

In view of the above, the problem of maintaining
turbulence (unordered chaotic motions) in the pro-
toplanetary cloud for a long time becomes very impor-
tant,

 

5

 

 

 

because the intensity of turbulization of cosmic
matter at different stages of the disk evolution deter-
mines to a considerable degree the possible mecha-
nisms of the formation of planets (Safronov, 1969).
Moreover, the evolution of structurized large-scale tur-
bulence that redistributes the initial angular momentum
and the cloud material (outer parts outward and inner
parts toward the Sun) along the disk radius is associated
with the problem of the present-day distribution of
mass and angular momentum among the Sun and plan-
ets

 

6

 

. To produce the present-day distribution of these
quantities, a starward mass flow must exist in the entire
disk or in a substantial part of it over the entire T Tauri
phase

 

7

 

. In a differentially rotating Keplerian disk
(which can be used as a first-approximation model of
the solar protoplanetary disk), the angular velocity of
average rotation 

 

W

 

(

 

r

 

)

 

 increases as 

 

|

 

r

 

|

 

–3/2

 

, i.e., the rota-
tion velocity of mass layers, increases toward the cen-
tral body. It thus follows that the turbulent flow of
momentum (mass) directed toward the inner disk layers
is, generally speaking, a manifestation of negative tur-
bulent viscosity,

 

8

 

 because the flow transfers averaged
momentum from slower rotating outer parts of the disk
to its faster rotating inner parts (see Starr (1968); IX.

 

5

 

According to early estimates of Von Weizsacker (1948), a mean
turbulent velocity on the order of one-tenth of the orbital velocity
results in a time of the cloud disruption on the order of 10

 

3

 

 years,
whereas, according to the same author, 10

 

8

 

 years are required for
planets to form.

 

6

 

Recall that the Sun accounts for 99.87% of the mass and only for
2% of the angular momentum of the system. Such a disparity of
the mass and angular momentum is difficult to explain while
modeling the protostar collapse and the disk formation

 

7

 

Because of the of the forces of viscous friction (which arise as a
result of the relative displacement of the elements of the gaseous
suspension in their orbital motion) the matter of the inner disk
regions drifts toward the proto-Sun along a very low-angle spiral
trajectory, whereas its angular momentum is transferred out-
ward—from inner to outer disk regions.

 

8

 

By some internal processes, e.g., by systematic transformation of
heat into kinetic energy within the framework of individual per-
turbations (Starr, 1968).The averaged flow has a longer scale
length of motion than the pulsation flow; therefore, negative vis-
cosity involves energy transfer along the spectrum from longer to
shorter scale lengthsNegative viscosity is a property of a statistic
ensemble of chaotic vortical motions of rotating gaseous matter.
This property describes the ability of the matter to transfer statis-
tically averaged momentum from the spatial domains.
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Application to the Circumsolar Nebula). Although var-
ious sources for generation of turbulence during differ-
ent stages of the evolution of the circumsolar protoplan-
etary cloud (or its individual parts) and various mecha-
nisms for the transfer of mass and angular momentum
in disks have been suggested in the literature (see, e.g.,
a thorough review by Makalkin (2003) and extensive
list of references therein), these results still require fur-
ther confirmation and development.

It is important that studies of disk turbulence carried
out by various authors are based mostly on the classical
concept of its statistical homogeneity and local isotropy
(see Kolmogorov, 1941, 1962). Local isotropy of small-
scale turbulence implies the invariance of the pulsation
velocity field 

 

u

 

 both with respect to rotations of the ref-
erence frame and a mirror reflection in arbitrary plane.
At the same time, according to modern concepts, the
turbulence pattern in free shear layers of differentially
rotating disk matter has to a certain extent the form of a
“double”

 

9

 

 anisotropic system consisting of an ensem-
ble of moving and interacting macro- and mesoscale
spiral vortical formations superimposed on a back-
ground of small-scale pulsational velocities (turbulent
chaos); note that small-scale vortical motions may be
partially organized themselves. Such a phenomenon is
due to the insufficiently studied tendency of turbulent
flows to self-organize into various coherent structures
in the case of high Reynolds numbers (see, e.g., Khlo-
pkov et al., 2002). Moreover, in a turbulized protoplan-
etary cloud, like in any rotating gaseous object (with
internal sources of heat), the so-called spirality density

 

u

 

 

 

· 

 

rot 

 

u

 

 (a pseudoscalar, which reverses its sign in the
case of mirror reflection) develops, which also leads to
anisotropy of small-scale turbulence, which in this case
has a gyrotropic nature (see Vainshtein et al., 1980;
Krause and Radler, 1980). The latter means that, in the
case of a small-scale vortical motion, left-rotating
motions in the ensemble may be more likely than right-
rotating or vice versa. It thus follows that many impor-
tant hydrodynamic parameters of cosmic matter depend
on the magnitude and direction of the vector of the
angular velocity of the rotating protoplanetary cloud

 

W

 

(

 

r

 

)

 

. These parameters include statistical characteris-
tics of the field of pulsational velocity such as the mean
spirality

 

10

 

 

 

H

 

 (this quantity has no reflection symmetry).
We show below that the effect of the mean spirality on
cascade energy processes in three-dimensional gyrotro-
pic turbulence may explain the possible effect of nega-
tive viscosity in the disk.

 

11

 

9

 

Townsend (1976) called coherent vortical formations and small-
scale turbulence a manifestation of the “double” structure of tur-
bulence, thereby emphasizing the effect of organized vortical
motions on the processes of turbulent transport in shear layers.
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The conservation of the mean spirality in nonviscous liquid flows
was discovered not very long ago by Moreau (1961).
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This phenomenon is the hydrodynamic analogue of the alpha effect
in magnetic hydrodynamics (Steenbeck et al., 1966), which explains
the growth of the large-scale magnetic field (dynamo effect) in the
case of turbulent motion of a conducting continuum with the break-
down of invariance with respect to the change of parity).

 

Note that this phenomenon is usually explained in
terms of the theory of two-dimensional turbulence,
which provides for inverse transport of energy from
small to larger vortices (see, e.g., Monin and Yaglom,
1996). Negative viscosity in the Solar System is known
to show up, in particular, in global mass circulations on
the Sun, Jupiter, Saturn, Venus (and, possibly, on Ura-
nus and Neptune), and in circulations of the terrestrial
atmosphere and ocean (see Monin et al., 1989). Large-
scale motions on the spherical surfaces of these cosmic
bodies can be analyzed in terms of two-dimensional
hydrodynamics, because the horizontal sizes of flows
far exceed the local density scale height (see Starr,
1968; Sivashinsky and Frenkel, 1992; Vergassola et al.,
1993; Gama et al., 1994). Such an approach can appar-
ently also be partially implemented in the case of the
disk turbulence under consideration, because shear
mass motions in thin astrophysical disks with the thick-
ness-to-radius ratio much smaller than unity (

 

h

 

disk

 

/

 

R

 

 

 

�

 

1

 

) must also possess certain properties of two-dimen-
sional

 

12

 

 turbulence (see, e.g., Bodenheimer, 1995;
Klahr and Bodenheimer, 2003).

Unfortunately, the application of the theory of two-
dimensional turbulence to the models of the evolution
of a thin astrophysical disk faces a purely formal prob-
lem: one has to expect condensation of energy on a cer-
tain maximally accessible scale length, which lies
between the pumping scale and the scale length of the
system. In geophysical hydrodynamics, such problems
can be overcome because of skin friction, orography,
radiation energy cooling, etc., which result in energy
sink and determine, in the long run, the quasi-equilib-
rium state of the turbulent field. The manifestations of
such factors include, in particular, the existence of cer-
tain external scale lengths (e.g., the Rossby–Obukhov
radius), which limit the propagation of energy toward
increasingly larger-scale motions and thereby deter-
mine the typical sizes of observed coherent vortical for-
mations. However, it is not so easy to avoid such prob-
lems when using two-dimensional turbulence in an evo-
lutionary accretion-disk model (a system without
clearly defined boundaries), because this would require
us to introduce a virtual long-wavelength dissipation
(and such an approach puts us onto a purely speculative
path) or agree with the presence of rapidly decaying
turbulence, which is inconsistent with the relatively
long-term (up to the time of the formation of planetesi-
mals) sustenance of the chaotic velocity field in the
disk. Hence, the theory of two-dimensional turbulence
is of limited interest as far as disks are concerned.

At the same time, we have already mentioned above
that real turbulence in an astrophysical disk has a gyro-
tropic nature, because, in the case of fast rotation of the
disk matter and inhomogeneous distribution of the

 

12

 

It would be more correct to speak about quasi-two-dimensional
turbulence, where motions are approximately two-dimensional;
i.e., they can be described by two-dimensional hydrodynamic
equations, but with additional special terms.



 

4

 

SOLAR SYSTEM RESEARCH

 

      

 

Vol. 41

 

      

 

No. 1

 

      

 

2007

 

KOLESNICHENKO, MAROV

 

intensity of turbulent pulsations, the field of pulsational
velocities 

 

u

 

, in the general case, is reflection-symmetric
with respect to the transformation 

 

z

 

  –

 

z

 

. Moffatt
(1969) was the first to point out the importance of the
spirality of localized vortex perturbations for three-
dimensional hydrodynamics of turbulized liquid. He
was also the first to discover the integral invariant 

 

H

 

 ≡
〈

 

(

 

u

 

 · 

 

rot 

 

u

 

)/2

 

〉

 

 associated with this spirality, which char-
acterizes the degree of connectedness of vortical forma-
tions in the flow (see, e.g., Saffman, 1992; Alekseenko
et al., 2005) and remains constant along the trajectory
of motion of any liquid particle of a nonviscous
medium.
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 The existence of this additional nonviscous
invariant for three-dimensional turbulence immediately
implies a certain degree of freedom for the energy cas-
cade process, because the two quantities (the average
energy 

 

E

 

 

 

≡

 

 

 

〈|

 

u

 

|

 

2

 

/2

 

〉

 

 and the average spirality 

 

H

 

), which
are conserved in nonlinear interactions in the inertial
interval of the energy spectrum, participate simulta-
neously in the cascade turbulent process. By analogy
with two-dimensional flows of an incompressible non-
viscous fluid (which also involves cascade transfer of
two velocity-quadratic integrals—the integrals of
energy, 

 

E

 

, and enstrophy 

 

Ω ≡

 

 

 

〈

 

(rot 

 

u

 

)

 

2

 

/2

 

〉

 

), in principle,
a mode of turbulent motion is possible that involves a
cascade of these conserved quantities moving toward
opposite ends of the spectrum where the direct cascade
of spirality toward shorter scales should be accompa-
nied by a reverse cascade of energy toward longer
scales.

It follows from the above that an adequate mathe-
matical model of the evolution of the real anisotropic
field of velocity pulsations in a protoplanetary cloud is
apparently difficult to develop without the allowance
for the symmetry laws of rotating turbulence. The effect
of fluctuations of background spirality on the develop-
ment of negative viscosity in the disk and on the struc-
turization of differentially rotating disk matter has not
yet been discussed in detail in the literature, and there-
fore we attempted to fill this gap in this paper.

TWO-LEVEL DESCRIPTION
OF TURBULENCE IN THE DISK

Hereafter, we proceed from the concept of the two-
level

 

14

 

 macroscopic description of the turbulized
medium of a protoplanetary cloud in terms of two inter-
acting continua (mutually open subsystems), which
simultaneously and continuously fill the same volume
of coordinate space—the subsystems of averaged

 

13

 

Recall that, according to Kelvin’s theorem, vortex lines are fro-
zen into liquid if 

 

ν

 

 = 0, 

 

p

 

 

 

=

 

 

 

p

 

(

 

ρ

 

)

 

 and external forces per unit mass
are conservative, implying that knots and linkages of vortex lines
are inevitably conserved (Alekseenko et al., 2005).
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This approach is essentially an application of multiscale methods
to turbulence (see, e.g., Dubrulle and Frisch, 1991; Fannjiang and
Papanicolaou, 1994).

 

motion and of turbulent chaos.
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 The continuum of
averaged motion, obtained by theoretic-probabilistic
averaging of instantaneous hydrodynamic equations,
serves to study the evolution of averaged hydrodynamic
fields, including large vortical formations in the disk.
The subsystem of turbulent chaos (in the general case,
the vortical anisotropic continuum with an internal
structure 

 

16

 

 is actually the turbulent velocity field 

 

u

 

(

 

r

 

, 

 

t

 

)

 

associated with stochastic small-scale pulsational
motion of whirling

 

17

 

 liquid (for which 

 

ω ≡

 

 

 

rot

 

u

 

 

 

≠ 

 

0

 

).
Such a division of the real turbulent flow into the imag-
inary averaged and pulsational flows depends, gener-
ally speaking, on the choice of the spatiotemporal aver-
aging domain (provided that ergodicity conditions are
satisfied), for which the mean values of local hydrody-
namic variables (which are continuous functions of
coordinates 

 

r

 

 =(

 

x

 

, 

 

y

 

, 

 

z) and time t) are known; hence,
this division is arbitrary to a certain degree.

To compose the full set of equations of motion for
turbulized liquid, which is characterized by two linear
scale lengths of motion—L (external) and l0 (inter-
nal)—it is convenient to introduce two coordinate sys-
tems—the microscale coordinate system (δ  ~ l)
and the macroscale coordinate system xj(dxj ~ Λ � l).
These coordinate systems subdivide space into elemen-
tary volumes18 δr' and dr', respectively. Hereafter, we
assume that L � Λ ≥ l0 and l0 � l � lν. The quantity L is
the integral turbulence scale (the scale length of motion
of the system); l0 (the size of a turbulent “mole”) is
equal to the scale length of the internal motion or the
state of the medium, and lν is the molecular microscale,
which is almost equal to zero. One can formulate the
problem of deriving hydrodynamic equations of motion
on macroscale xj from the known Navier–Stokes equa-

tions on microscale . The associated problem of aver-
aging is one of the central problems in continuum
mechanics, and, in the case of such a complex system
as a turbulized liquid, the method of averaging often
determines the very construction of the macroscopic

15This very description of developed hydrodynamic turbulence
served as the starting point that allowed us to begin the develop-
ment of models of structurized mesoscale turbulence as a process
of self-organization in open nonequilibrium fluctuating media
(see Kolesnichenko, 2002, 2003, 2005; Marov and Kolesni-
chenko, 2006).

16Kolesnichenko (2005) showed that, in the process of temporal
evolution of the quasi-equilibrium subsystem of turbulent chaos,
mesoscale coherent structures can be generated because of the
mutual phase synchronization (coherence) of a certain ensemble
of small-scale oscillatory modes with close frequencies.

17Vorticity plays the crucial role in the mechanics of turbulence,
because it makes possible the cascade process of generation of
smaller vortices by larger ones.

18It is important to bear in mind that here we do not speak about
absolute dimensions. For example, in a hydrodynamic model of a
disk medium, a physically infinitely small volume may be much
greater than the volume of an entire planet.

x j' x j'

x j'
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model.19 Hereafter, we assume that the hydrodynamic
scale length of the averaged motion Λ (e.g., the mesh
size of the difference grid) is such that the subsystem of
turbulent chaos in the averaging domain dr ~ Λ3 con-
tains the entire ensemble of coherent mesoscale struc-
tures whose sizes are smaller than the size of the aver-
aging domain.20 In this case, the effect of turbulent
chaos on the averaged motion manifests itself as an
additional turbulent transfer of momentum and energy
by small-scale vortical formations, which requires the
construction of semiempiric closure models (defining
relations) for the averaged hydrodynamic equations
and modeling of the effective coefficients of turbulent
exchange, which allow, in particular, for the anisotropy
of chaos associated with the presence of coherent
mesoscale structures (Kolesnichenko, 2002).

Equations of turbulent chaos in the presence of
average flow. Let the random component u(r, t) of the
velocity field U(r, t) have a scale length l0

21, which is
small compared to the scale of hydrodynamic averag-
ing Λ. Hereafter, we assume that the averaged velocity
〈U(r, t)〉 only slightly varies on any intermediate scale
length l satisfying the inequality lν � l � l0 � Λ, and
hence the methods of the theory of homogeneous turbu-
lence (see Monin and Yaglom, 1996) can be applied on
such intermediate scales. In this paper, we also assume
that the disk medium is not subject to electromagnetic
forces, the disk rotates about the z-axis with the Keple-
rian angular velocity Ω(r), and the origin of the coordi-
nate system coincides with the center of mass of the sys-
tem. We further assume, for the sake of simplicity, that
the large-scale (averaged) flow reduces to differential
rotation exclusively. The components of the vector of the
averaged velocity 〈U〉 then have the following form in
cylindrical coordinates 〈U〉r = 0, 〈U〉ϕ = Ω(r)r, 〈U〉z = 0.

We thus proceed in our analysis of three-dimen-
sional disk turbulence from the following set of instan-
taneous equations of motion for incompressible22

homogeneous liquid, which includes the Navier–
Stokes equation, the continuity equation, and the equa-
tion of state:

(1)

19The most clear description of modern methods of spatial averag-
ing for turbulized liquid, which correspond to the transition from
equations of motion of small elements of the continuum to the
description of the same motions on macroscales, can be found in
the paper by Nikolaevskiy (2003).

20According to available estimates, for the averaged flow to con-
tain the bulk (80% or 90%) of the total energy of the turbulent
motion, the averaging scale length Λ must be ten to twenty times
shorter than the integral scale length L.

21In the case of small-scale turbulence, the scale length l0 may
coincide with the size of energy-containing vortices.

22Hereafter, for the sake of simplicity, we restrict our analysis to
incompressible fluids 〈ρ〉 = ρ = const. Analysis of turbulence in a
compressible medium would require more mathematical efforts.

∂tU U ∇⋅( )U+ ρ 1– ∇P– ν∇2U g,+ +=

divU 0, p p ρ( ).= =

Here, P(r, t) is the true (instantaneous) pressure of the
disk matter; g(r, t) = –∇Ψ is the vector of acceleration
due to the external mass force (gravity), and Ψ(r, t) T)
is the Newtonian gravitational potential. If the mass of
the protoplanetary cloud is equal to several percent of
the mass of the central body (or, more precisely, if
�disk/�� ≤ hdisk/R, where hdisk and R are the disk half
thickness and radius, respectively), one can neglect the
self-gravity of disk particles23; in this case, we have Ψ =
G��/|r|, g = –∇Ψ = G��r/|r|3 (where �� is the mass
of the star, G is the gravitational constant, and |r| is the
central radius-vector).

We now average24 Eqs. (1) over an ensemble of
identical hydrodynamic systems to derive the Reynolds
equation:

(2)

where R(r, t) = –ρ〈uu〉 is the Reynolds stress tensor and
I is the unit vector.

The equations for pulsational velocity u can be
derived by subtracting the corresponding Eqs. (2) from
Eqs. (1). If we further restrict our analysis to the so-
called second-order correlation approximation (see
Krause and Radler, 1980), when the terms that are qua-
dratic in velocity fluctuations can be neglected, and use
the above assumption that the averaged velocity
〈U(r, t)〉 remains unchanged on any intermediate
microscale l inside the inertial interval lν � l � l0, then
we have to consider the following equations:

(3)

Which, in the case of the elementary volume dr' mov-
ing at the average velocity 〈U(r, t)〉 of the turbulized
flow, acquire (in the case of the appropriate redetermi-

23In the cases where self-gravity effects are important, Ψ =
G��/|r| + Ψcr, and the potential of self-gravity Ψcr satisfies the
Poisson equation.

24Angular braces in this paper mean averaging 〈�(r, t)〉 ≡

(r + x, t)d2x of an l-periodic parameter �(r, t) over

some cubic spatial domain with the edge l (such that periodic
boundary conditions are satisfied on the faces of this cube) under
the assumption that this averaging does not depend on the exact
value of the scale; from a purely mathematical viewpoint, this
definition can be considered to be identical to averaging over an
ensemble of identical hydrodynamical systems in the asymptotic
limit l/Λ  ∞. Hereafter, we use the following identity rela-
tions for periodic functions that can be proved by integration by
parts: 〈∂i�〉 = 0; 〈(∂i�)�〉 = –〈�∂i�〉; 〈(∇2�)�〉 = −〈(∂i�)(∂i�)〉;
〈u · (rot v)〉 = 〈(rot u) · v)〉; 〈u · ∇2v〉 = –〈(rot u) · (rot v)〉, if
divv = 0.

1

l
3

---- �ξ l<∫

∂t U〈 〉 U〈 〉 ∇⋅( ) U〈 〉+ ρ 1– ∇– I P〈 〉 R–( )⋅=

+ ν∇2 U〈 〉 ∇ Ψ〈 〉 ,–

div U〈 〉 0,=

∂tu U〈 〉 u+( ) ∇⋅( )u+ ρ 1– ∇p– ν∇2u ∇ψ,–+=

div u 0.=
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nation of the velocity u in this coordinate system) the
following form25:

(4)

Here, p ≡ P – 〈P〉 is the pressure pulsation; ψ ≡ Ψcr –
〈Ψcr〉 (hereafter, we assume that ψ excites u in some
way that we do not specify here). It goes without saying
that Eqs. (4) must be supplemented by periodic bound-
ary conditions in spatial variable: u(x + nl, y + ml, z +
ql) = u(x, y, z) for all x, y, and z and all integer n, m, and q.

Laws of conservation in locally isotropic turbu-
lence. Consider now integrated conservation laws asso-
ciated with the homogeneity, isotropy, and mirror sym-
metry of the turbulent field u. The identity relations
given in footnote 24 can be used to derive from Eqs. (4),
by integrating them over the spatial periodicity cell (a
spatial cubic domain with the edge l such that periodic
boundary conditions are satisfied on its faces), the fol-
lowing conservation laws for the averaged kinetic
energy E = 〈|u|2/2〉, enstrophy,26 Ω = 〈|w|2/2〉 and the
total spirality H = 〈u · w/2〉 (see, e.g., Frisch (1995)):

(5)

where

(6)

Here, the quantities ε, εΩ, and εH denote the dissipation
rates of averaged kinetic energy, enstrophy, and spiral-
ity per unit mass, respectively. It is evident from
Eqs. (5) that the quantities E, Ω, and H remain constant
in the nonviscous limit ν  0 0 (and, in particular,
throughout the entire inertial interval) if no dissipation
and motion pumping are present.

ENERGY CASCADE IN ISOTROPIC 
TURBULENCE WITH MIRROR SYMMETRY

Before analyzing the possible effect of spirality on
the dynamics of disk turbulence, we must recall some
of the concepts and quantitative spectral characteristics
of small-scale turbulence (see Batcherlor, 1953; Monin
and Yaglom, 1996).

The dynamics of vorticity and the energy cascade.
As we have already pointed out above, most of the stud-
ies of turbulent motion within a disk, carried out within
the framework of the problem considered here, were

25This means that the subsystem of turbulent chaos has zero hydro-
dynamic velocity relative to the subsystem of averaged motion.

26Note that the balance equation (5) for enstrophy is valid only in
the two-dimensional case.

d
dt
-----u ∂tu u ∇⋅( )u+≡ ∇ p

ρ
--- ψ+⎝ ⎠

⎛ ⎞– ν∇2u,+=

div u 0.=

dE
dt
------- ε– 2νΩ,

dΩ
dt
-------– εΩ,

dH
dt
-------– εH,–= = = =

ε ν
2
--- ∂iu j ∂ jui+( )2

i j,
∑ , εΩ ν rotw 2〈 〉 ,≡ ≡

εH ν w rotw⋅〈 〉 .≡

based mostly on the concept of Kolmogorov (1941,
1962). According to this concept, in the limit of large
Reynolds numbers (which correspond to large-scale
motions in the flow of cosmic matter), the random
nature of vortex fragmentation and the chaotic nature of
the transfer of their energy downscale the cascade result
in almost locally isotropic27 stochastic regime of turbu-
lent fluctuations within the boundaries of the spa-
tiotemporal domain of averaging of instantaneous
hydrodynamic equations despite the anisotropy, inho-
mogeneity, and nonstationarity of the averaged flow. In
this case, the energy structure of the three-dimensional
small-scale field of velocity pulsations is statistically
similar for large Reynolds numbers Re ≡ u0l0/ν (where

u0 =  is the characteristic velocity of pulsational
velocity field and l0 is the characteristic scale length of
energy-bearing vortices), and the inertial interval of
wavenumbers k0 � k � kν that separates the domains of

dissipation and generation of turbulent energy E = /2
in the space of wavenumbers k is the wider the higher is
the Reynolds number Re. The dissipation rate of the
averaged kinetic energy per unit mass ε, which is given
by formula (6) in the initial Kolmogorov theory (K41),
is considered to be a universal constant for the turbulent
motion studied. The quantity ω also characterizes the
flow of kinetic energy, which is transferred in a cascade
mode without any loss along successively increasing
wavenumbers kn � kn – 1 (n = 1, 2, …) (decreasing scale
lengths, ln = 1/kn) within the inertial interval until the
flow reaches the dissipation scale length lν = 1/kν ~
(ν3/ε)1/4, for which the energy dissipation rate due to
kinematic viscosity is equal to ε.

Under the assumption of homogeneity and station-
arity of the field of pulsation velocities u(r, t), the most
important turbulence characteristics are the (two-point
and two-time) correlation28 tensor of the velocity field

(r, x, t, τ) ≡ 〈ui(r, t)uj(r + x, t + τ)〉 and the spectral
energy tensor (see Batchelor, 1953)

(7)

which is in fact the Fourier image of the correlation ten-

sor . Note that the complex tensor Φij(k, ω) for

27Recall that in locally isotropic turbulence, any average quantity
that characterizes it is invariant with respect to any parallel trans-
lations, rotations, and mirror reflections.

28Note that components of the turbulent Reynolds stress tensor can

be written in the form Rij(r, t) = –ρ (r, 0, t, 0),, and the total

spirality, in the form H = εijk(∂ /∂xj)|x = 0, τ = 0.

u 2〈 〉

u0
2

R̃ij

R̃ik

R̃ij

Φij k ω,( )

=  
1

2π( )4
------------- R̃ij x τ,( ) i k x⋅ ωτ–( )–[ ]dxdτ,exp∫∫

R̃ij
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incompressible fluid (div u = 0) has the following prop-
erties (which we use below)29:

(8)

The energy spectral function (density) E(k, ω), which is
the most important quantity in the problem of homoge-
neous turbulence, is determined by the following inte-
gral:

(9)

where integration is performed in the k-space over the
sphere Sk of radius k ≡ |k|. The total kinetic energy per
unit mass transferred along the cascade can then be
written in the following form30

(10)

and Φii ≥ 0 for almost all k and ω, because these diago-
nal elements represent the density of the kinetic energy
components in the wave space.

In the wavenumber interval k0 � k � kν, the spectral
energy tensor Φij(k, ω), which is a second-rank isotro-
pic tensor, is statistically unrelated to the source of
energy, which is restricted by the wavenumber k0, and
therefore we can assume that it must be determined by
the energy dissipation rate ε exclusively:

(11)

As follows from dimensional considerations, the spec-
tral energy density must be described by the Kolmog-
orov formula

(12)

where C is a dimensionless constant on the order of
unity.

Two-dimensional turbulence. In the case of devel-
oped two-dimensional turbulence31 in a noncompress-
ible fluid, Kolmogorov-type theories have two positive
definite quantities that are conserved in the nonviscous
limit. They are the averaged kinetic energy E = 〈|u|2/2〉
and the enstrophy Ω ≡ 〈|rotu|2/2〉, which, if generated in
a uniform stream on some intermediate scale lengths of
energy pumping kl, which are far from the dissipation

29Hereafter, summation is to be performed over repeated indices if
not otherwise stated.

30Hence, the quantity E(k, ω)dkdω can be interpreted as the kinetic
energy (from all wavenumbers with a fixed absolute value) con-
tained in the wavenumber interval (k, k + dk) and in the frequency
interval (ω, ω + dω).

31Strictly two-dimensional turbulence is only a mathematical ide-
alization and is never realized in nature.

k jΦij k ω,( ) kiΦij k ω,( ) 0.= =

E k ω,( ) 1
2
--- Φii k ω,( )dS,

Sk

∫=

E
1
2
--- u 2〈 〉≡ 1

2
--- R̃ii 0 0,( ) 1

2
--- Φii k ω,( )dkdω∫∫= =

=  E k ω,( )dkdω,∫∫

Φij k ω,( ) E k ω,( )
4πk4

------------------ k2δij kik j–( ).=

E k( ) Cε2/3k 5/3–  k0 � k � kν( ),=

scale kν, both become involved in the cascade process.
As is evident from formula (5), in the case of finite vis-
cosity in a two-dimensional flow, the enstrophy can
only monotonically increase with time along with the
quantity ε = 2νΩ . This is due to the fact that the mech-
anism of stretching of vortex tubes, which ensures the
growth of enstrophy in three-dimensional flows, is
blocked in the case of a two-dimensional flow.

In the general three-dimensional case, the Fourier
transform of the vortex field w ≡ rot u, whose compo-
nents have the form ωi = εijk∂juk, is evidently equal to

 ≡ ik × , and its spectral tensor has the form Ωij(k,
ω) = εimnεjpqkmkpΦnq(k, ω), where εjpq is the asymmetric

Levi-Civita tensor.32 In particular, we derive from this,
in view of formula (8),

(13)

Note that the formula Ω = ε/2ν implies that the spec-
trum of the root-mean-square velocity vortex Ω coin-
cides with the spectrum of viscous dissipation of
kinetic energy ε. The following formula is an immedi-
ate implication of Eq. (13):

(14)

where the corresponding spectral density for the root-
mean-square velocity vortex has the form

(15)

It is shown in the theory of two-dimensional turbu-
lence (see, e.g., Monin and Yaglom, 1996; Chapter 26)
that relationship (15) between the spectral densities of
energy E(k) and enstrophy Ω(k) forbids the simultaneous
downscale transfer of these quantities.33 Energy in the
two-dimensional case is transferred to large and not to
small (as in the three-dimensional case) scale lengths,
whereas the flow of enstrophy is directed toward short
scales. Note that there are two inertial intervals in the
case of developed two-dimensional turbulence. For
small wavenumbers k0 < k < kl, the cascade process is
determined by the energy dissipation rate and the dimen-
sion analysis yields classical formula (12) for the spec-
tral density with the only essential difference from the
three-dimensional case that the energy flow in the inertial
interval with spectrum (12) is directed from shorter to
longer scales. For large wavenumbers (kν > k > kl), the

32εijk is the tensor, which is equal to εijk = 0 if i, and are not all dif-
ferent, and εijk = 1 or –1 if i, , and are all different and arranged in
a cyclic or anticyclic order, respectively.

33Kraichnan (1967) was the first to propose the hypothesis of
inverse cascade of energy in two-dimensional turbulence. The
same author (Kraichnan, 1976b) interpreted inverse cascade in
terms of negative turbulent viscosity. According to some esti-
mates, inverse cascade, which has been confirmed many times by
numerical simulations, is one of the most important results in the
theory of developed turbulence since Kolmogorov’s works (see
Gama et al., 1994; Frisch, 1995).

ŵ û

Ωij k ω,( ) k2Φij k ω,( ) E k ω,( )
4πk2

------------------ k2δij kik j–( ).= =

Ω w 2/2〈 〉≡ Ω k( )dk∫ k2E k ω,( )dkdω,∫∫= =

Ω k( ) k2E k( ) Cε2/3k1/3.= =
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enstrophy dissipation rate εΩ ≡ ν〈|rotw|2〉 becomes an
additional determining quantity, and dimension analysis
yields a different spectral distribution of kinetic energy
by the absolute values of the wavenumber k:

(16)

which describes the inertial interval of enstrophy trans-
fer. Note that, in the two-dimensional case, the enstro-
phy cascade is a direct one; i.e., enstrophy is transferred
from longer to shorter scale lengths. Formula kν ~
(εΩ/ν3)1/6 determines the boundary of the interval of the
enstrophy transfer.

Thus, in the case of two-dimensional turbulence, we
have a reverse cascade of kinetic energy E, where the
energy of small-scale chaotic motion is used for the
energy pumping of mesoscale vortex structures. This
effect, which came to be known as negative viscosity
(see Starr, 1968, Vergassola et al., 1993; Gama et al.,
1994), is typical, as we pointed out above, for many
quasi-two-dimensional cosmic objects. We now pass to
the analysis of real three-dimensional hydrodynamic
turbulence in natural media.

ENERGY AND SPIRALITY CASCADES
IN A REFLECTION NONINVARIANT DISK 

TURBULENCE

The breakdown of mirror symmetry in a protoplan-
etary disk. Hence, the analysis of turbulence fields,
which statistically satisfy certain symmetry conditions
(as in the case of locally isotropic turbulence), can be
seen to result in a number of important mathematical
simplifications. Although mirror symmetry is a funda-
mental property of hydrodynamic equations, the defini-
tion of some of the important hydrodynamic parame-
ters includes the notions of righthandedness (lefthand-
edness). Such quantities include, in particular, the
vorticity of the field of velocity pulsations w ≡ rotu. As
we pointed out above, such a statistical characteristic of
small-scale turbulence devoid of mirror symmetry as
the total spirality (a pseudoscalar34 of the velocity field,
determined by the mean (see footnote 24))

(17)

may be of considerable interest for differentially rotat-
ing matter. The field of pulsation velocities u with non-
zero average spirality has the form of anisotropic con-

34Recall that vectors A, which behave as Aref(r, t) = –A(–r, t), are
referred to as polar vectors, whereas vectors satisfying the rela-
tion Aref(r, t) = A(–r, t) are referred to as axial vectors or
pseudovectors (the superscript “ref” hereafter means the operator
of reflection in an arbitrary plane or in an arbitrary point). The
scalar Vref ≡ (Aref × Bref) · Cref = –(A × B) · C = –V, which
depends on the use of righthandedness, is a pseudoscalar; the last
statement means that this scalar reverses its sign if we change
over from a righthanded coordinate system to a lefthanded one.

E k( ) CΩεΩ
2/3k 3– ,=

H
1
2
--- u w⋅〈 〉≡  = 

1

2l3
------- u r x+ t,( )

x l<
∫ w r x+ t,( )d3x,⋅

tinuum35 formed by the ensemble of arbitrarily ori-
ented small-scale spiral vortices where, e.g., right-
handed motions (vortical structures) are more likely
than left-handed structures. Thus, the quantity H,
related to the topological structure of a complex vortic-
ity field, is a fundamental measure of the “lack of
reflection symmetry” in a turbulent flow.

According to Moffatt (1981), the spirality of turbu-
lent field, “which is a quadratic invariant of some local-
ized motion of a fluid (under the conditions determined
above), has a status comparable to the status of the per-
turbation kinetic energy.”36 Note that only the analysis
of the background anisotropic turbulence with a mag-
netic field and devoid of mirror symmetry (whose sim-
plest measure is provided, in particular, by the hydrody-
namic37spirality H) allowed a breakthrough to happen
in the understanding of turbulent magnetic dynamo in
astrophysics (the so-called α -effect) (see, e.g., Vainsh-
tein et al., 1980; Parker, 1979; Krause and Radler,
1980). At the same time, as we show below, the quantity
H can be also considered as a statistical characteristic of
an anisotropic field of pulsation velocities, which is
capable of developing the effect of negative viscosity in
a rotating medium (in particular, in a protoplanetary
disk).

It is known that the spirality of the velocity field can
be efficiently generated in a mirror asymmetric (i.e., not
invariant with respect to parity reversal) field of small-
scale random velocities u, e.g., in turbulence that rap-
idly rotates about a fixed axis (see, e.g., Steenbeck
et al., 1966). In particular, spirality may naturally
develop in a protoplanetary cloud because of its rota-
tion and nonuninform distribution of density (density
stratification) or intensity of turbulent pulsations in
zones with developed convection. Here we give some
preliminary arguments in favor of the hypothesis that,
at some heliocentric distances, vertical thermal turbu-
lent convection in the disk (during certain stages of the
disk evolution) is very likely to result in left-handed
spiral motions in the regions between its equatorial
plane and the “upper” surface. Indeed, the ascending
matter should expand and rotate under the action of the
Coriolis forces and this process results in lefthanded
spiral motion. The descending matter should compress
and has to rotate in the opposite direction under the

35Recall also that, in his studies of small-scale properties of flows
(the random-cascade model), Kolmogorov (1941, 1962) did not
take into account any spatial structures that could possibly exist
in the turbulent flow. However, as we pointed out above, accord-
ing to modern concepts, vortical structures (threads) are almost
always present in a turbulent flow on small scales and these struc-
tures may affect the flow properties in the inertial interval as well.

36The question so far remains open about other possible integral
invariants (see Edwards, 1967, 1968) besides the classical invari-
ants of energy, momentum, and angular momentum, which char-
acterize to a certain degree the preserved topological configura-
tion of vortical threads.

37The quantity H is often referred to as “hydrodynamic” spirality
in order to distinguish it from magnetic spirality.
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action of Coriolis forces and its motion is again
lefthanded. It is evident that right-handed spiral
motions should dominate in the “lower” part of the
disk. The balance of left- and right-handed spiral
motions may be established in the vicinity of the equa-
torial plane of the disk only in the absence of gradients
of turbulence intensity, i.e., at the very late stages of the
evolution of a differentially rotating protoplanetary
cloud.

Effect of spirality on the energy cascade. Thus, we
can imagine a situation where the source of kinetic
energy (e.g., as a result of the interaction of Archimedes
and Coriolis forces (see below) in the differentially
rotating disk matter) at wavenumbers k0 generates a
nonzero total spirality H. We have shown above that the
total spirality of the pulsational velocity field in the
inertial interval is a conserved quantity (like the total
energy), d〈u · w〉/dt = 0. Note that the generation of spi-
rality is associated with the development of large-scale
engagements38 of vortex flow lines (see, e.g., Alek-
seenko et al. (2005)), which are conserved in a cascade
(not nonviscous) process in the inertial domain, but are

destroyed by viscosity on scale lengths lν = .

By analogy with the definition of quantity E(k) (9),
we can define the spectral spirality density

(18)

where integration is performed in the k space over a
sphere Sk of radius k ≡ |k|. We thus have for the total spi-
rality H

(19)

The function F(k, τ) is, in view of relation (18), real and
it is a pseudoscalar; it is equal to zero if the field of pul-
sational velocities u is statistically invariant with
respect to the reflection transform (e.g., a parity trans-
form of the form x' = x, y' = y, z' = –z, which describes
a mirror reflection in the z = 0 plane).

In the case of isotropic and reflection-nonsymmetric
turbulence, the functions E(k, τ) and F(k, τ) are suffi-
cient for the complete determination of the spectral ten-
sor Φil(k, τ). In this case, the most general formula for
the uniform field r (which is stationary in t) of small-

38As we already pointed out above, spirality characterizes the
degree of connectedness of vortex lines in a flow. The number of
turns n of a thread around another thread is characterized by the
engagement H = ±2nΓ1Γ2, where Γk is the intensity of the thread
and the “sign” refers to the right or left engagement, respectively.
If a single vortex tube twines itself before closing, it has got a
knot on it; the conservation of spirality also means that the knot
structure of the vortex field is conserved. It has been also shown
that the spirality invariant H is associated with a more general
topological property—the so-called Hopf (1984) invariant (see
Moffatt, 1984).

kν
1–

F k τ,( ) i ε jklkkΦ jl k τ,( )dS,

Sk

∫≡

H iε jkl kkΦ jl k τ,( )dkdτ∫∫ F k τ,( )dkdτ.∫∫= =

scale turbulence that satisfies equalities (8), (9), and
(18) has the following form (see Moffatt, 1978):

(20)

Unlike the spectral density of kinetic energy E(k, τ),
the spectral spirality density F(k, τ) may be both posi-
tive and negative. And the ambiguous role of spirality
in three-dimensional cascade processes is due to this
very feature, because simple arguments that imply the
existence of two inertial intervals (as in the case of two-
dimensional turbulence) do not work in this case. In the
two-dimensional case, the spectral densities of energy
and enstrophy are related by formula (15), whereas
only an upper limit (the so-called “realizability” condi-
tion) can be obtained for the function F(k):

(21)

This constraint follows, e.g., from the Cauchy–Bunya-
kovsky–Schwartz inequality written in the form

and from equalities (10), (13), and (19). Here asterisk
denotes complex conjugation and the “^” sign above a
symbol denotes Fourier transform.

Generally speaking, inequality (21) allows the real-
ization of two scenarios of the behavior of spirality in a
turbulent flow (Brissaund et al., 1973). First, in some
cases, by analogy with two-dimensional turbulence,
there is a cascade of conserved quantities toward the
opposite ends of the inertial interval of the spectrum,
and the direct downscale cascade of spirality H is
accompanied by the synchronous inverse cascade of
energy E toward larger scales. Second, there is the pos-
sibility of the simultaneous direct cascade of both quan-
tities toward small scales. Which of the two processes
occurs at the given time instant, depends on the integral
properties of the system considered and also on the
boundary and initial conditions.

In the first case, we use the hypothesis that the
energy spectrum E(k) may depend only on the wave-
number k and the spirality dissipation rate εH; dimen-
sion considerations yield a spectral law of the form

(22)

The spectral spirality function F(k) is determined by the
process of spirality transfer from the source acting at
wavenumbers k0 to the viscous sink on wavenumbers kν
and further. During the spirality generation, large-scale
engagements of vortex lines of the flow under consider-
ation develop, which survive in the cascade process in
the inertial domain, but are destroyed by viscosity on

scale lengths lν = .

Φij k τ,( ) E k τ,( )
4πk4

----------------- k2δij kik j–( ) iF k τ,( )
8πk4

-------------------εijkkk.+=

F k( ) 2kE k( ).≤

û ŵ*⋅ û* ŵ⋅+〈 〉dS

Sk

∫
2

4 û 2〈 〉dS ŵ 2〈 〉dS,

Sk

∫
Sk

∫≤

E k( ) εH
2/3k 7/3– .∼

kν
1–
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The second scenario assumes passive behavior of
spirality in the turbulent flow. This means the realiza-
tion of common Kolmogorov energy cascade E(k)
toward small scales with law (12). Let the spirality gen-
eration rate at wavenumbers ~k0 be equal to εH (see for-
mula (6)). Spirality is generated simultaneously with
energy, and therefore it is evidently constrained by an
inequality of the form |εH| ≤ k0ε (Brissaund et al., 1973).
If spirality is injected at the maximum rate, then

(23)

The spirality spectrum F(k) must be proportional to
εH (because of the pseudoscalar nature of both quanti-
ties), and the only possible additional parameters that
may determine F(k) in the inertial domain k0 � k � kν
are ε and k. It thus follows from dimension consider-
ations that

(24)

where CH is the universal constant similar to the Kol-
mogorov constant C. Note that equalities (23), (12), and
(24) also imply inequality |F(k)| ≤ 2kE(k), in full agree-
ment with formula (21).

It follows from the above that the presence of spiral-
ity in this case has a weak effect on the cascade transfer
of energy, because the relative value of spirality deter-
mined by the dimensionless ratio F(k)/2kE(k) decreases
monotonically with increasing k0 independently of the
spirality injected into the flow at wavenumbers ~k0. It is
safe to assume that, in the case of sufficiently large k/k0,
the spirality should have only a minor effect on the
dynamics and should be transferred and diffuse in the
same way as a dynamically passive scalar admixture
(Monin and Yaglom, 1996). At the same time, Kraich-
nan (1973) and Andre and Lesieur (1977) showed that,
if the mode of generation of almost maximum spirality
is realized for each wavenumber in the liquid flow
under consideration, then the total transfer of kinetic
energy toward higher wavenumbers should be weak-
ened, and the process of the decay of turbulence should
be extended in time. This leads us to an important con-
clusion that the relatively long existence of turbulence
in a rotating protoplanetary cloud may be partially due
to the lack of reflection symmetry with respect to the
equatorial plane of the field of vortex velocities in the
disk.

Hence, gyrotropic turbulence behaves in a way that
is qualitatively different from the behavior of nonspiral
turbulence. This allows us, in the case of possible real-
ization of an inverse cascade of kinetic energy, not only
to explain the development of the effect of negative vis-
cosity in the differentially rotating (three-dimensional)
protoplanetary cloud, but also to forecast the develop-
ment of relatively stable and energy intensive coherent
mesoscale vortex structures, which initiate the mecha-
nisms of trigger cluster formation in the disk.

εH k0ε u0
3/l0

2.∼ ∼

F k( ) CHεHε 1/3– k 5/3–  k0 � k � kν( ),=

GENERATION OF SPIRALITY
IN A ROTATING DISK

The lack of symmetry with respect to the z = 0 plane
perpendicular to the vector of angular velocity Ω nec-
essarily implies the breakdown of the mirror symmetry
of random motions, which plays the crucial part in the
generation of spirality (see Steenbeck et al., 1966). Let
us show that such a symmetry is also absent in the case
of a rotating protoplanetary disk stratified in z, where
Archimedean forces ρ' g act on liquid elements whose
density differs from the local ambient density ρ0 by ρ’g
(Ò g · Ω ≠ 0). In other words, let us analyze the role of
the interaction of Archimedean and Coriolis forces in
the generation of the mean spirality in the disk. Note in
this connection that the lack of invariance with respect
to the parity transform is a more general property than
the presence of spirality, although it follows from the
latter (see Gilbert et al., 1988).

Let us adopt the viewpoint that small-scale vorticity
in the disk is produced by convection. To find the pseu-
doscalar function 〈u · rot u〉, one has, in the general
case, to solve the hydrodynamic problem in the Bouss-
inesq approximation for the pulsating velocity field u in
the presence of unstable density stratification and with
a preferential direction of vortex twisting Ω (see, e.g.,
Eltayeb, 1972). We describe the motion of matter
within the framework of this approach in a reference
frame rotating at the average angular velocity Ω of the
disk rotation. Equation of motion (1) then acquires the
following form:

(25)

where 2Ω × U and 1/2|Ω × r|2 are the Coriolis acceler-
ation and the potential of the centrifugal force, respec-
tively, and g = –∇(ψ – 1/2|Ω × r|2). The problem is char-
acterized by two dimensionless numbers: the Rossby
number Ro = U0/ΩL and the Ekman number Ek =
ν/ΩL2. Here L = O(R) is the scale length of the variation
of the characteristic velocity U0. The Rossby and the
Ekman numbers for the disk are much less than unity;
and therefore, for the sake of simplicity, we restrict our
analysis to the geostrophic motion, when we can
neglect the translational acceleration and the viscous
term in formula (25). In this case, the equation for the
turbulent component of the velocity field U in the
Boussinesq approximation39 takes the following form:
2ρ0Ω × u = –∇p' + ρ’g. We now apply the curl operation
to this equation to obtain, in view of rot rot(ρ’g) = ∇ρ' × g,

(26)

39Recall that in the Boussinesq approximation we can assume, up
to the first order of small quantities and in view of relation ∇p0 =

ρ0g, that ρ–1∇P + g ≈ (∇p' + ρ'g) with the simultaneous

replacement of the continuity equation by the nondivergence con-
dition, divU = 0. Here, p' and ρ' are the pressure and density devi-
ations from the main state P0 and ρ0 determined by the presence
of winds and flows.

∂tU U ∇⋅( )U 2Ω U×+ +  = ρ 1– ∇P– g ν∇2U,+ +

ρ0
1–

2ρ0rot Ω u×( ) g– ∇ρ'×=
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and, consequently,

(27)

We now set u = u⊥ + u|| (where u|| = uziz is the turbulent
velocity component u that is parallel to the angular
velocity vector Ω; iz = Ω/|Ω|; uz = u · iz; u⊥ = uxix + uyiy is
the projection of velocity u onto the equatorial disk
plane, which we hereafter assume to be uniform with
respect to x and y; and ux = uy = u⊥) and average formula
(26) over horizontal planes z = const to obtain

(28)

In the special case, where the vector g of gravity
acceleration is parallel to the vector Ω of angular rota-
tion and ρ0 is uniform in the horizontal planes, it fol-
lows from formula (28) that, if the continuity equation
∇ · (ρ0u) = ρ0∇⊥u⊥ +  ∂(ρ0uz)/∂z = 0 is applied, the fol-
lowing formula (Hide, 1976) is true:

(29)

which establishes the direct relation between the part
〈u⊥ · rot u⊥/2〉 of the mean spirality H and the pseudos-
calar Ω · g. We now use the estimate (Moffatt, 1978)

(30)

and can assume that the spirality for the protoplanetary
disk is approximately equal to H ≅ 〈u⊥ · rot u⊥/2〉,
because the L||/L⊥ ratio in this disk is sufficiently small.
Here U||, U⊥, L||, and L⊥ are the characteristic velocities
and spatial scale lengths parallel and perpendicular to
the angular velocity vector Ω, which (by virtue of the
continuity equation) are related by the formula U||/L|| =
0 (U⊥/L⊥).

Note that the correlation (g/ρ0)〈ρ'uz〉 also appears in
the definition of the coefficients of turbulent transfer in
the vertical direction and, in particular, in the definition
of the coefficient of turbulent heat exchange in the ver-
tical direction (see, e.g., Van Mieghem, 1973; Marov
and Kolesnichenko, 2002), where it characterizes the
rate of transformation of turbulent energy into the inter-
nal energy of the medium (or vice versa depending on
the stability or instability of the distribution of density
and temperature in the system) and thereby the degree
of decay or generation of turbulence. Thus, relation

2ρ0 Ω u×( ) rot Ω u×( )⋅ Ω u×( )– g ∇ρ'×( )⋅=

=  Ω– u g ∇ρ'×( )×[ ]⋅
=  Ω g⋅( ) u ∇ρ'⋅( )– Ω ∇ρ'⋅( ) u g⋅( ).+

2ρ0 Ω 2 u⊥ rot u⊥⋅〈 〉 Ω g⋅( ) u ∇ρ'⋅〈 〉–=

+ g u∇ρ'〈 〉 Ω.⋅ ⋅

u⊥ rot u⊥/2⋅〈 〉
ρ'∂uz/∂z〈 〉
4ρ0 Ω 2

-------------------------- Ω g⋅( ),–≅

u rot u⋅〈 〉 u⊥ rot u⊥⋅〈 〉 u⊥ rot u||⋅〈 〉+=

+ u|| rot u⊥⋅〈 〉 u⊥ rot u⊥⋅〈 〉 1
u|| rot u⊥⋅〈 〉
u⊥ rot u⊥⋅〈 〉

------------------------------+⎝ ⎠
⎛ ⎞=

=  u⊥ rot u⊥⋅〈 〉 1 O
U ||/L⊥

U⊥/L||
--------------⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞

=  u⊥ rot u⊥⋅〈 〉 1 O L||
2/L⊥

2( )+( ) u⊥ rot u⊥⋅〈 〉 ,≅

(29) proves once again that nonzero spirality in the
disk, which is generated by the interaction of
Archimedean and Coriolis forces, indeed affects the
time of turbulence sustenance in the disk.

Hence, the correlation between the density and the
vertical velocity 〈ρ'∂uz/∂z〉 plays an important role in
the determination of the magnitude and sign of the
mean spirality in the disk. The explicit form of this cor-
relation and the form of the function H can be found
only in terms of an adequate hydrodynamic model of
the turbulent flow in the disk, where the spatial distribu-
tions of all hydrodynamic parameters are known. We do
not do this here, but consider the qualitative pattern of
the development of spirality in some convection zone of
the disk. Let a vortex with the velocity uz shifts by the
distance ζ in the convection zone of the upper part of
the disk (0 < z < hdisk), whose mean density ρ0 decreases
from the equatorial plane toward the disk surface
[(−∂ρ0/∂z) > 0]. In this case, positive fluctuations of
density, ρ' ≅ –ζ∂ρ0/∂z > 0, must appear. Because of the
gradient of the mean density, it must, in accordance

with the continuity equation ∇⊥u⊥  – ∂(uzρ0)/∂z
(in the Boussinesq approximation), expand, i.e.,
acquire horizontal velocity components. The resulting
momenta of Coriolis forces lead to the left-hand spiral
rotation. The descending matter in the upper part of the
disk should compress and rotate in the opposite direc-
tion under the action of the Coriolis forces; i.e., it must

again undergo left-hand spiral motion.40 Thus, convec-
tion in the upper half of the disk is more likely to lead
to left-hand than to right-hand spiral motions. It is evi-
dent that right-hand spiral motions should dominate in
the lower half of the disk (–hdisk < z < 0). Hence, the lack
of mirror symmetry with respect to the transform z  −z
leads to the enhancement of vortex structures of a cer-
tain sign. The balance of left- and right-hand helical
motions may be established in the region of the equato-
rial plane of the disk only in the absence of the gradient
of turbulence intensity in this plane (because uniform
turbulence is conductive to the establishment of a uni-
form distribution of differently oriented vortices),
because one of the types of spiral motions comes from
below and the other type, from above, i.e., only at the
latest stages of the evolution of a differentially rotating
protoplanetary cloud.

40In the above reasoning, we neglected the intensity of turbulent
pulsations in the convective part of the disk, which, in the general
case, may not be everywhere the same. The anisotropic intensity
of small-scale turbulence may, in principle, reverse the direction
of rotation of an individual vortex in the convection zone. How-
ever, the density gradient is the main contributor to the total spi-
rality H.

ρ0
1–
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NEGATIVE VISCOSITY IN ROTATING DISK 
TURBULENCE AS A MANIFESTATION

OF THE SPIRALITY CASCADE

Let us now proceed to the interpretation of the
inverse cascade of the energy of pulsational velocity u,
which is possible in the case of three-dimensional spiral
turbulence, in terms of negative viscosity.

Problems of the momentum transfer theory. Let us
begin with the fact that the authors of the vast majority
of astrophysical papers use common hydrodynamic
equations in their models of the evolution of a rotating
turbulent cloud, but with turbulent viscosity instead of
the molecular viscosity. In this case, the authors of the
above-mentioned papers naturally use the linear rela-
tion

(31)

between the symmetric Reynolds stress tensor Rij and
the symmetric tensor emn ≡ ∂m〈U〉n + ∂n〈U〉m of deforma-
tion rates (i.e., the general Prandtl theorem of the
momentum transfer). The quantities Kijmn (the compo-
nents of some fourth-rank tensor that is symmetric in i,
j and m, n) of this linear function have the meaning of
the coefficients of turbulent viscosity and are deter-
mined by the statistical characteristics of small-scale
turbulence. By the very definition of isotropic large-
scale turbulence, all the mean quantities associated
with it remain unchanged in the case of arbitrary rota-
tions (but not necessarily in the case of reflections); the
tensors that possess this property are isotropic.41 Let us
further assume that the tensor of turbulent viscosity,
Kijmn, is isotropic (but not mirror-symmetric). In this
case, the expansion Kijmn = aδijδmn + bδimδjn + cδinδjm is
valid (see, e.g., (Korenev, 1996)) and we obtain, by sub-
stituting it into formula (31),

(32)

Note that the coefficient of turbulent viscosity νturb in
formula (32), which is determined by the small-scale
field of pulsational velocity u, is usually assumed to be
positive. However, we cannot rule out the exotic possi-
bility νturb< 0,42 which, according to Kraichnan

41The Kronecker (δij) and Levi-Civita (εijk) tensors are examples of
isotropic tensors of the second and third rank, respectively, and
the tensor product δijδmn is a fourth-rank isotropic tensor. These
tensors have the same components in all coordinate systems and
hence have the invariable components in the case of arbitrary
rotation.

42Note that the positiveness of the coefficients of turbulent
exchange (and, in particular, of the coefficient νturb) has not been-
proven in the general case for a turbulent liquid flow (unlike the
case of molecular transfer coefficients, whose positiveness is
deeply rooted in the thermodynamics of irreversible processes);
turbulent viscosity can be negative in the case of a two-dimen-
sional flow (see, e.g., Vergassola et al., 1993; Gama et al., 1994).

Rij
1
3
---Rklδklδij– ρKijmn ∂m U〈 〉n ∂n U〈 〉m+( )=

=  ρKijmnemn

Rij
2
3
---ρEδij– ρνturbemn νturb b c+≡( ).+=

(1976a), may be realized owing to the fluctuations of
the spirality of the turbulent field u. We now use general
formula (32) to obtain for the particular model of the
averaged disk motion that the tangential stress does not
depend on the gradient of angular velocity

(33)

The angular velocity in the Keplerian disk decreases
with heliocentric distance, and therefore the direction
of transfer of angular momentum (of matter) should
also be directed away from the Sun. Thus, if applied to
the entire cloud,43 the Prandtl theory of the angular
momentum transfer (or the theory of turbulent stress)
leads to a conclusion (an evidently wrong one) about
the general outward transfer of matter throughout the
entire rotating turbulent cloud.

Because of such problems faced by the theory of
momentum transfer in the general case of curvilinear
flows, the creators of semiempiric theory of turbulence
Taylor (1915) and then Von Karman (1936) suggested a
logical generalization of formula (33) where tangential
stresses are assumed to depend on the gradient of
momentum

(34)

The difference between formulas (33) and (34) proved
to be very important for the model of the evolution of
the protoplanetary cloud, because angular velocity in
the disk decreases with heliocentric distance, whereas
the angular momentum increases, and hence the two
quantities should be transferred in the opposite direc-
tions according to the above two viewpoints. That is
why formulas (33) and (34), if used separately, cannot
explain all the specific features of turbulent rotational
motion of matter in all parts of the disk in the cases
where outer parts of the cloud are effectively trans-
ferred outward and inner parts, toward the Sun (see
Safronov, 1969). In view of this, Wasiutynski (1946)
suggested a more general formula for tangential
stresses Rrϕ in a rotating medium

(35)

which includes both cases considered above and is
associated with the effect of anisotropic viscosity. In

the case of a purely radial flow (  = 0), this formula
transforms into formula (34), whereas in the case of an

isotropic medium (  = ) it coincides with the com-
mon hydrodynamic formula (33). Note, however, that
the form of the Wasiutynski stress tensor44 (of which

43Without the allowance for the effect of the strong gravitational
field of the Sun on the inner parts of the protoplanetary cloud.

44Note that formula (35) is not a component of any tensor; it can be
used only in a particular coordinate system.

Rrϕ ρνturbr
∂
∂r
-----

U〈 〉ϕ

r
------------⎝ ⎠

⎛ ⎞ ρνturbr
∂Ω r( )

∂r
---------------.= =

Rrϕ ρνs
turb1

r
--- ∂

∂r
----- r2Ω r( )[ ].=

Rrϕ ρKr
r1
r
--- ∂

∂r
----- r2Ω r( )[ ] 2ρKϕ

ϕΩ r( ),–=

Kϕ
ϕ

Kϕ
ϕ Kr
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formula (35) is a special case), which is widely used in
the astrophysical literature (see, e.g., Tassoul, 1979) to
explain the differential rotation of various cosmic
objects in terms of “anisotropic viscosity,” so far lacks
physical argumentation; i.e., it is still unclear whether it
is only a formal generalization or whether it character-
izes turbulent flow more precisely. Below, we give a
possible substantiation of formula (35) in terms of
asymmetric hydrodynamics of turbulized media. How-
ever, we shall first show that negative viscosity may
appear in three-dimensional disk turbulence even
within the framework of the classical Prandtl theory of
turbulent stress (i.e., formula (33)).

Negative viscosity (thermodynamical approach). In
the case of phenomenological description of a quasi-
equilibrium subsystem of structurized turbulent chaos,
we proceed from the formalism of generalized statisti-
cal thermodynamics, which assumes the analysis of the
ensemble of microscopically identical systems of tur-
bulent chaos with identical generalized thermodynami-
cal state parameters (such as the internal energy of
chaos Uturb(r, t) 45 the generalized “turbulization tem-

perature” Tturb(r, t)46, the specific volume 1/ρ(r, t), etc.)
and requires the use of a probabilistic approach
(Kolesnichenko, 2002; Marov and Kolesnichenko,
2006). The latter is due to large-scale turbulent fluctua-
tions of some additional parameters of the state of

chaos,47 qk(r, t) (k = ) (the so-called internal coor-
dinates) which serve as a difference measure in any set
of such thermodynamically identical systems. The
internal coordinates, which describe the thermody-
namic state of chaos, may include fluctuating positive-
determined parameters, which adequately characterize
a whirling liquid (including coherent mesoscale forma-
tions) inside a physically infinitesimal elementary vol-
ume dr. In particular, one can choose the following sto-
chastic quantities qk 

48 the turbulent energy dissipation
rate ε, the generalized angular velocities (which charac-
terize coherent mesoscale vortex formations), the
enstrophy Ω (in the case of a flat flow), etc.

Kolesnichenko (2002) used methods of nonequilib-
rium thermodynamics to show that, in the case of our
two-level macroscopic description of the turbulized

45Turbulent chaos is much away from the full chaos of thermody-
namic equilibrium because it possesses a certain orderliness: even
in a developed locally isotropic turbulence, the Kolmogorov
spectrum of the distribution of kinetic energy (of pulsational
motion) in the space of wavenumbers k in the inertial scale inter-
val E(k) ~ k–5/3 is far from uniform (E(K) = const).

46Note that the generalized temperature of the subsystem of turbu-
lent chaos is not reduced in the general case to the absolute tem-
perature.

47Large-scale turbulent fluctuations should be distinguished from
statistical molecular fluctuations, arising due to the atomic struc-
ture of the system.

48Note that some of the internal coordinates qk may belong to the
incoherent component of the subsystem of turbulent chaos,
whereas other internal coordinates may characterize individual
coherent mesoscale structures.

1 n,

medium of the protoplanetary cloud in terms of two
interacting continua, in the vortex continuum, which
corresponds to small-scale components of pulsating
thermohydrodynamic parameters, such a quasi-station-
ary regime is established between the takeoff of energy
from the “external source” (which, in particular, is
associated with the averaged differential rotation of the
turbulized matter of the disk) and the energy dissipation
due to internal dissipative processes in the subsystem of
chaos, where the production of entropy of turbulization
Sturb(r, t) is compensated by its outflow to the subsystem
of averaged motion so that the total production of
entropy from chaos is minimal 49 It follows from this
that the subsystem of turbulent chaos exports entropy
into the “external medium”, i.e., gives it to the sub-
system of averaged motion. In other words, the inflow
of negative entropy (negentropy) from the “external
medium” (the subsystem of averaged motion) is
required to maintain the stationary state inside the sub-
system of turbulent chaos; this negentropy coming to
the subsystem of chaos is used for the maintenance and
improvement of its internal structure. Such a condition
is known (Prigogine and Stengers, 1984) to be suffi-
cient for the development of coherent dissipative
(mesoscale) structures in the vortex continuum.

Kolesnichenko (2002) showed that in this quasi-sta-
tionary case the total production of turbulent entropy
(energy scattering) has the structure of a bilinear form

Tturbσturb(r, t) = (r, t)Xα(r, t), whose explicit form

is determined by the particular model of turbulized
medium, i.e., by the set of hydrodynamic processes
included into the model. According to the main postu-
late of nonequilibrium thermodynamics (see, e.g., de
Groot and Mazur, 1962), this form can be used to derive
the defining (closing) relationships between the ther-
modynamic flows ℑα and the forces Xα a in the form of

linear relations ℑαi = Xβj (α, β = 1, 2, …). The

peculiarity of the turbulized continuum is that the
matrix of Onsager coefficients Lαβ depends not only on
averaged thermodynamical parameters of state of the
medium (as in the laminar case), but also on the statis-
tical characteristics of the subsystem of turbulent chaos
and, in particular, on the energy flow ε along the cas-
cade of turbulent vortices (which is thus one of the ther-
modynamic flows in the system) or on the flow of
hydrodynamic spirality, which is effectively generated
in the case of gyrotropic small-scale turbulence. Such a
situation, which is typical of any self-organizing (syn-
ergetic) system, results, in the general case, in nonpos-
itive-determined individual terms ℑα(r, t)Xα(r, t) in the
sum Tturbσturb(r, t) which, however, is positive-deter-

49According to Kolmogorov (1941), the energy flow η along the
hierarchy of turbulent vortices down to the molecular level is a
characteristic parameter of the subsystem of small-scale turbu-
lence. In the stationary case, this flow coincides with the energy
dissipation rate ε.

ℑαα∑

Lαβ
ij

β∑
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mined, σturb ≥ 0. It is well known (see, e.g., Haken,
1983) that in this case the superposition of various ther-
modynamic flows may in principle result in negative
values of individual diagonal elements of matrix Lαβ
and, thereby, in a situation where some coefficients of
turbulent exchange are negative.

Thus, in the case of the evolution of a turbulized pro-
toplanetary cloud, we cannot exclude the possibility of
the development of the situation when, in some parts of
the cloud, modes of turbulent mass motion occur at
which the coefficients of turbulent exchange may
acquire negative values (e.g., the viscosity coefficient
νturb in formula (33)) (see, e.g., Sivashinsky and Fren-
kel, 1992; Vergassola et al., 1993; Gama et al., 1994). It
follows from the above analysis of gyrotropic disk tur-
bulence that the hydrodynamic spirality H may serve as
a statistical characteristic of the turbulent field, which
could provide the inverse cascade of kinetic energy and
thereby the appearance of the effect of negative viscos-
ity in a three-dimensional disk.

Rotational viscosity. Let us now return to the diffi-
culty of the Prandtl theory of momentum transfer in tur-
bulized media that astrophysicists faced when they
tried to explain differential rotations of gaseous astro-
physical objects. The standard astrophysical approach
to the derivation of the averaged hydrodynamic equa-
tions (based on the Reynolds postulates), which, in par-
ticular, are intended for modeling the protoplanetary
cloud, cannot apparently be considered quite adequate,
because, as we mentioned above, the actual picture of
turbulent transfer in the disk essentially differs from the
classical picture (see, e.g., Safronov, 1969). Although
the authors of published works, beginning from O. Rey-
nolds, the founder of the phenomenological theory of
turbulence, and then G.D.Mattioli,50 discussed the
approaches involving the asymmetry of turbulent stress
tensor (Rij ≠ Rji) and such additional internal character-
istics of the state of the turbulent field as the vortex, the
moment of inertia, and the moment of internal forces,
this line of research has been, unfortunately, neither
deservedly appreciated nor further developed.

At the same time, recently interest has been renewed
again in asymmetric hydrodynamics (hydrodynamics
of moments)51of turbulized media due to certain
achievements in the problem of spatial averaging of
various equations of motion in continuum mechanics
including, e.g., liquid flows in porous media, suspen-
sion-carrying flows, deformation of composite materi-
als, etc. It was shown, in particular, (see, e.g., Ferrari,
1972; Nikolaevskiy, 2003), that more accurate spatial
averaging (without the traditional Reynolds postulate
of the commutativity of averaging and differentiating
operations) of hydrodynamic equations for small ele-

50See Mattioli’s works published in 1933.
51Note that the asymmetric hydromechanics of Kosser (see, e.g., de

Groot and Mazur, 1962) has since long gained wide recognition,
e.g., in the theory of liquid crystals and liquid helium.

ments of the continuum, made in order to describe the
same motions on a macroscale, yield the generalized
Reynolds equations. These averaged equations include,
in particular, a term with rotational viscosity, which is
associated with an asymmetric part of the turbulent
stress tensor.

Nikolaevskiy (2003) used methods of hydrome-
chanics of moments to derive for an asymmetric turbu-
lent flow the following formula for energy dissipation
associated with viscous processes:

(36)

where I is the unit tensor; e = 1/2(∇〈U〉 + ∇〈U〉transp) is
the tensor of averaged deformations; Rs and Ra are the
symmetric and asymmetric parts of the Reynolds stress
tensor, respectively; ϖ (≡〈rot u〉) is the so-called vector
of internal angular velocity, which is due to the intrinsic
vorticity of the field of pulsation velocities u and char-
acterizes the vortex “anisotropy” of the flow on the
microscale l 52; T is the turbulent momentum stress ten-
sor associated with pulsational transfer of fluctuations
of the moment of momenta of small-scale vortices.53 In
the general case of an anisotropic liquid, flows and ther-
modynamic forces appearing in formula (36) are
related by the following simple set of defining relation-
ships:

(37)

(38)

(39)

typical of Kosser’s asymmetric hydrodynamics. Here,
the phenomenological turbulent coefficients Kijmn,

, and  are strongly varying functions of aver-
aged parameters of state of the medium and depend on
the statistical characteristics of the turbulent velocity
field u.

In this paper, we consider only the simplest conclu-
sions that follow from the isotropic (but not mirror
symmetric) structure of turbulent transfer coeffi-

52Recall that, in the case of a disk, an elementary volume of the
scale length l may contain a large number of rotating vortex for-
mations (clusters). This, by the way, is a serious argument for the
use of turbulent hydromechanics of moments and of the concept
of two-level macroscopic description of turbulized medium in the
models of a protoplanetary cloud.

53In asymmetric turbulent hydromechanics, this tensor appears in
the additional evolutionary equation of the internal angular
momentum balance (in the equation for ϖ) (see de Groot and
Mazur (1962); Nikolaevskiy (2003)).
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cients54. Note that in most of the liquid, after a short
relaxation time the curl of the averaged velocity, rot
〈U〉, becomes equal to the angular velocity ϖ that deter-
mines the internal rotation of the mass elements of the
continuum, –εmlk∂l〈Uk〉 = ϖm. In this case, the thermody-
namic force in linear constitutive relations (39) also
vanishes and so do the corresponding flux densities of
the moments of momentum of small-scale vortices, i.e.,
the interaction between the vortices of the macroscopic
velocity field and intrinsic rotational motion of the par-
ticles disappears (see, e.g., de Groot and Mazur, 1962).
However, the law of the parity of tangential stresses Rij =
Rji on a macrolevel breaks down in the case of the tur-
bulized continuum (unlike the behavior of the laminar
flow) and relation (32) should be replaced by the fol-
lowing formula:

(40)

The coefficients νturb and  are determined by the
field of turbulent velocity u, and the coefficient νturb is

a scalar, whereas the coefficient  is a pseudoscalar,
because the tensor εikp(rot 〈U〉)p is a second-rank
pseudotensor.

Let us now analyze turbulence with mirror symme-
try. In this case, on the one hand, the coefficients νturb

and  should not change during reflection trans-

form; however, on the other hand, the coefficient 
must reverse its sign, because it is a pseudoscalar.

Therefore, the coefficient  = 0 in the case of an iso-
tropic and mirror symmetric small-scale turbulence.

Hence, the rotational viscosity  may differ from
zero only if the field of turbulent velocities is not statis-
tically invariant with respect to the parity transform, in
particular, if spirality H ≠ 0.

In the disk turbulence model under consideration,
relation (40) for shear stress acquires the following
simple form:

(41)

54In the case of an anisotropic small-scale turbulent field, the situa-
tion becomes much more complicated and a number of additional
terms appear in formula (40), which are associated with the vec-
tor field (e.g., the field of the gradient of turbulence intensity, the
field of density gradient, or the angular velocity of the system)
that caused the anisotropy (see, e.g., Krause and Radler, 1980).
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(compare it with formula (32)). Hence, the formula for
tangential stresses in a rotating medium suggested by
Wasiutynski can be physically substantiated in terms of
asymmetric mechanics of turbulized media with an
asymmetric Reynolds stress tensor. One of the impor-
tant implications of formula (41) is the conclusion
about the mutual complementarity of the Prandtl theory
of momentum transfer and the Taylor vortex transfer
theory in a rotating medium. The appearance of the
additional degree of freedom ϖ in asymmetric hydro-
dynamics makes both approaches necessary for solving
particular problems. In particular, one of the competing
mechanisms should dominate in a rotating protoplane-
tary cloud depending on the numerical values of the
coefficients of shear and rotational viscosity in the cor-
responding disk regions.

CONCLUSIONS

In conclusion, we briefly summarize the main
results of our study. We analyzed the possibility of the
influence of hydrodynamical spirality that develops in
a rotating disk on the synergetic structurization of cos-
mic matter and on the appearance of the effect of nega-
tive turbulent viscosity in this disk within the frame-
work of the problem of reconstruction of the evolution
of the protoplanetary cloud surrounding the Sun at the
early stage of its evolution. We showed that relatively
long persistence of turbulence in a protoplanetary cloud
may be partially due to the lack of mirror symmetry of
the field of pulsating velocities with respect to the equa-
torial disk plane.

A specific mechanism of the development of coherent
mesoscale formations in the subsystem of turbulent
chaos associated with the phenomenon of phase-fre-
quency synchronization of autooscillations of stochastic
internal coordinates (corresponding to the coherent com-
ponent of chaos) was analyzed in our earlier paper
(Kolesnichenko, 2004). We also demonstrated (Kolesni-
chenko, 2005) the principal possibility of the self-organi-
zation of a flow, where the generation of coherent forma-
tions associated with the effect of “phase transitions”
induced by the natural noise of the fine-grained fluctuat-
ing field of chaos is likely in the process of the temporal
evolution of the quasi-equilibrium vortex subsystem. In
this paper, we formulate the general concept of energy
feeding of coherent mesoscale vortex structures in the
thermodynamically open subsystem of turbulent chaos,
which is associated with the realization of inverse cas-
cade of kinetic energy in mirror asymmetric disk turbu-
lence.

Because of the energy release, the inverse cascade
generates the corresponding hierarchical system of gas
condensations (with a fractal density distribution),
which ultimately leads to the intensification of mechan-
ical and physicochemical interactions between the par-

=  ρ νturb νr
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r
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ticles of matter, resulting in spontaneous formation and
growth of dust clusters, stimulation of condensation
and phase transitions, of mass and heat exchange
between different parts of the heterogeneous disk sub-
system, and substantial modification of the oscillation
spectrum, etc. In this case, gravity plays the crucial part
at the final stage of the formation of large-scale gas and
dust condensations in the domain of inner planets.55

We used the methods of nonequilibrium thermody-
namics and a two-level description of maximally devel-
oped disk turbulence to demonstrate the possible
appearance of the effect of negative viscosity in the
three-dimensional case. We suggested that hydrody-
namic spirality, which develops owing to fast rotation
of an unstably stratified disk medium, can be used as a
statistical characteristic of isotropic, mirror-noninvari-
ant small-scale turbulence. In this case, the appearance
of negative viscosity in the disk can be due to cascade
transfer of energy from small to larger vortices in spiral
turbulence.

We derived, within the framework of asymmetric
hydromechanics of turbulized media, a formula for the
tensor of turbulent stress in the Wasiutynski form,
which is widely used in astrophysical literature to
explain the differential rotation of various cosmic
objects in terms of “anisotropic viscosity.” This phe-
nomenological relation, which is used in astrophysics
because of the well-known difficulties faced by the
Prandtl theory of momentum transfer in a rotating tur-
bulized medium, has until recently lacked physical sub-
stantiation. In this paper, we reveal the mutual comple-
mentarity of the Prandtl theory of momentum transfer
and the Taylor theory of angular momentum transfer for
a rotating protoplanetary cloud in the cases where one
of these competing mechanisms dominates (depending
on the numerical values of the shear and rotational vis-
cosity coefficients) at a certain heliocentric distance.

The ultimate aim of the approach that we elaborate
in this paper is to develop a macroscopic model of the
turbulent motion of liquid, which should be maximally
close to reality and meet various dynamic conditions in
natural media and in the protoplanetary cloud in partic-
ular. Many difficulties still remain to be overcome on
this way, because the construction of a universal model
of turbulence appears problematic. Our interest in the
hydrodynamic spirality as applied to a structured disk
turbulence stems from the fact that the existence of
such an additional nonviscous invariant implies, gener-
ally speaking, a certain modification of the classical
energy cascade process in the inertial spectral domain,
where inverse energy transfer is possible from small to
larger vortices. This makes it possible not only to
explain the phenomenon of negative viscosity in a dif-
ferentially rotating protoplanetary cloud, but also to
forecast the birth of energy active coherent vortex struc-

55It is not improbable that there was no gravitational instability in
the subdisk in the domain of inner planets (see, e.g., Safronov
(1960)).

tures, which ultimately trigger the formation mecha-
nisms of gas and dust clusters in the disk. Unfortu-
nately, the effect of inverse cascade of energy for three-
dimensional gyrotropic turbulence so far lacks a reli-
able published confirmation in numerical simulations.
Hence, we apparently have several more years to wait
for an unequivocal and conclusive answer to the key
problem of our approach to the criteria of realization of
such a cascade in a differentially rotating disk.
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